

Presentation to International Planetary Probe Workshop, June 28, 2006

A. A. Pankine, K. T. Nock, N. C. Barnes Global Aerospace Corporation

MARS ROVERS ARE A GREAT SUCCESS...

A NEW PLATFORM FOR EXPLORATION Orbiters are not in situ Landers do not move **Rovers have very limited** range **Airplanes or gliders last** for just a few hours Guided, long-duration **Airship propulsion makes** them heavy and difficult balloon platforms to deploy have global reach Free balloons are totally at the mercy of the winds Mars Express/ESA-GAC

EXPLORATION CAPABILITIES

- Global planetary coverage
- Heavy, power-intensive payloads (90 kg and 200 W in 3 to 10 years, 170 kg and 400 W >10 years)
- Long flight duration: 700 days (1 Mars year)
- Autonomous navigation and guidance, target acquisition
- Targeted overflight of surface sites and precise delivery of science probes
- High-resolution imaging (1-10 cm visible & 0.1-10 m IR), elemental, magnetic and gravity observations and surveys
- In situ atmospheric chemistry and circulation
- Landing sites reconnaissance, navigation beacon emplacement

Olivine outcrop and DS-2 landing ellipse (NASA/JPL/ASU)

SEARCH FOR ORIGIN OF ATMOSPHERIC METHANE

- Methane-making organisms discriminate between isotopes as they feed on a global reservoir of CO₂
- Measure the C¹²/C¹³ ratio in the methane.
- If it is different from the isotope ratio in the CO₂, it would offer strong evidence for a biological source.
- Guided balloons enable planetary-wide search for the sources of methane

Tunable Laser Spectrometer for Atmospheric and Sub-surface gas measurements on Mars (NASA JPL)

CHARACTERIZE CRUSTAL MAGNETIC ANOMALIES

- MGS discovered strong crustal magnetic field anomalies
- However, orbital measurements
 - Lack required resolution to resolve origin of anomalies, and
 - The solar wind obscures weak fields
- Understanding these anomalies will
 - Provide clues on crust evolution
 - Advance understanding of Martian extinct dynamo
 - Possibly identify subsurface structures that harbor life
- Balloon platform with an array of magnetometers can
 - Enable high-resolution observation of crustal magnetic anomalies
 - Enable detection of weak anomalies via gradient measurements

Map of crustal magnetic anomalies on Mars (GSFC NASA)

EMPLACEMENT OF SURFACE NETWORKS ON MARS

A single guided balloon platform can

- Carry tens of mini-labs
- Deploy meteorological & seismological networks

Tetrahedron Seismometer Network

Mars Meteorological and Seismometer Probe

SAILING ACROSS THE MARTIAN EQUATOR

SAMPLE RETURN ASSIST

Canister Collection Rover

SAMPLE RETURN ASCENT VEHICLE

SUMMARY

Guided Mars balloon platforms

- Extend the reach of and work synergistically with orbiters, rovers, and landers
- Can be a relatively low-cost component of future Mars exploration
- Enable revolutionary new planetary exploration capabilities at Mars

MARS WIND PROFILE AND BGS

- Winds vary with altitude
 - Balloon at 10 km
 Density = 0.00645 kg/m³,
 - Wing at 3 km
 Density = 0.01186 kg/m³
 - Relative wind velocity ~ 38 m/s
- Wing generates lift force
 - "Lift" force is horizontal
 - force is transmitted by tether to balloon
 - balloon drifts relative to local air mass
 - balloon drag ≈ wing lift
- Wing is in denser air than balloon
 - 3 km : 10 km (1.84x)
 - equivalent wing area increased relative to balloon

BGS OPERATION

BGS PERFORMANCE ANALYSIS: STRONG ZONAL FLOW

- BGS V_{rel}=-18 m/s
- BGS $\Delta V = -1.8 \text{ m/s}$

BGS PERFORMANCE ANALYSIS: WEAK FLOW

- BGS V_{rel}=9 m/s
- BGS $\Delta V = 1 \text{ m/s}$

PAYLOAD VS. ALTITUDE

- Height of atmospheric density levels lower by 4 km in dusty atmosphere
- Balloon to float 2-3 km above southern highlands in dust storm

- 6 km at $\tau = 3$
- M=87 kg, R=17.2 m
- Altitude of 10 km at normal conditions

ALTITUDE CHANGE AFTER PROBE RELEASE

- Releasing 30 kg of probes raises altitude by 3 km
- Increase in super-pressure can be relieved by venting 1 kg of gas (out of 8 kg)

KEY TECHNOLOGIES

- Advanced Balloon Materials
- Balloon Guidance System (BGS)
- Entry, Descent and Inflation (EDI)
- Autonomous Navigation & Guidance in Mars winds
- Mars Balloon performance modeling

MARS BALLOON

- Low-mass high-strength envelope material
 - composite material
 - 1-μm Mylar/38-Denier PBO thread/3- μm PE film
 - areal density of 0.012 kg/m²
 - Nano-tubes fabric in future?
- Superpressure sphere
- Aluminized top, white bottom to prevent CO₂ condensation

Mars balloon concept

Composite Mars balloon materialgo

EDI

- Mach 2 parachute at 13-28 km
- Careful balloon envelope deployment
- Cryogenic H₂ inflation near-term technology
 - Inflation gas (8.3 kg H₂)
 - Combustion gases (0.14 kg H₂ and 1.14 kg O₂
 - Heat exchanger
- Float at 8 km after 20 min
- Make-up gas for >100 day missions
 - ~1.6 kg H₂ per year minimum
 - Collect and crack ambient H₂ O for H₂ (10⁻⁴ kg H₂ O per kg of atmosphere)

AUTONOMOUS NAVIGATION AND GUIDANCE

Navigation

- star camera
- trajectory forecast
- orbiter communication
- surface feature recognition
- control algorithms
- Target acquisition
 - onboard target database
 - surface feature recognition
 - targets of opportunity
 - camera attitude sensor and controller